
MIS686 Final Project - Peter Dudziak

Table of Contents

- Part 1: Topic Selection
 - Selected Topic - [Parking Garage Management Software]
 - Overview
 - Business Rules
 - Use Cases
- Part 2: Database Design
 - ERD
 - Relational Diagram
- Part 3: Database Implementation
 - SQL Statements
 - Stored Procedures, Triggers, & Indexes
 - Data Implementation
- Part 4: Database Deployment
 - Database Deployment Screenshots
- Part 5: Questions & Dashboard
 - Analytical Questions
 - Dashboard Images

Part 2: Topic Selection

Selected Topic: Parking Garage Management Software

Overview:

The database that was created was made with the intent to track information related to a
parking garage and the customers that frequented it. It allows the parking garage to track
customers that come into the parking garage, find which parking spots they use, the time they
spent in the parking spots, and the amount that they need to pay for parking in the parking
garage for that long. It also keeps track of the customer’s information in relation to their vehicle,
including their license plate and car model. Customers can make reservations for certain
parking spots before they arrive and access the garage, and the parking garage also has
opening and closing hours that dictate when customers can enter and exit. This data is intended
to give an idea of how frequently the parking garage is used, and how much of a profit it makes,
while also committing the information of customers that use it for user analytics.

Business Rules:

1. Each customer must have a car.
2. That car must have a valid license plate.
3. The customer must park in only one parking spot for the duration of
their session.
4. The customer can have multiple sessions occurring at the same time.
5. A parking spot can be used multiple times per day, so long as there is
no overlap in the parking sessions for that parking spot.
6. The customer cannot enter the parking garage outside of its normal
working hours.
7. The customer will be charged an hourly fee depending on how long
they stay in the parking garage for.
8. Each parking spot can only have one car at a time, and will be
considered ‘occupied’ while in use. No other car can be parked in that
space while it is occupied.
9. When a car leaves a parking space, it becomes vacant and available
for use.
10. A parking space can be reserved or under maintenance. In which
case, it cannot be parked in.
11. There is a 10.1% tax applied to the hourly parking fee, and a 2 dollar
fee to reserve a parking space.

Use Cases:
1. Gathering data on how many people use the parking garage can help to promote the
parking garage by setting up stronger fees. Finding information on when and how much
certain people park in the garage can give insight into how to properly price the fees in

the parking garage.
2. Tracking individual drivers by their license plate numbers and payment information

can help in the event of a criminal investigation, wherein information regarding
suspected persons is necessary for police handling.

3. Using historical data to make plans and determine when would be the best time for
certain parking spaces to go under maintenance, or when to work on the parking

garage’s different sectors.

Part 2: Database Design

ERD:
The ERD (Entity Relationship Diagram) was created using the business rules to create a visible
showcase of the different entities, attributes, and relationships to show how each table
connects with one another.

Relational Diagram:
From the ERD and expected relationships, it was transformed into a relational diagram,
accounting for supertype relationships as well as weak entity relationships. Through an iterative
process, primary keys, foreign keys, and relationships were created to develop a database
schema of tables.

Part 3: Database Implementation

SQL Statements:

DROP DATABASE IF EXISTS ParkingManagement;
CREATE DATABASE ParkingManagement;
USE ParkingManagement;

CREATE TABLE Customers (
 CustomerID INT PRIMARY KEY AUTO_INCREMENT,
 Name VARCHAR(100) NOT NULL,
 Phone VARCHAR(15),
 Email VARCHAR(100),
 UNIQUE (Email)
);

CREATE TABLE Vehicles (
 VehicleID INT PRIMARY KEY AUTO_INCREMENT,
 LicensePlate VARCHAR(20) NOT NULL UNIQUE,
 Model VARCHAR(50),
 CustomerID INT,
 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) ON DELETE
CASCADE
);

CREATE TABLE ParkingSpots (

 SpotID VARCHAR(10) PRIMARY KEY UNIQUE, -- e.g., A1, B2, Z30
 Status ENUM('Available', 'Occupied', 'Maintenance') DEFAULT 'Available'
);

CREATE TABLE ParkingSessions (
 SessionID INT PRIMARY KEY AUTO_INCREMENT,
 VehicleID INT,
 SpotID VARCHAR(10),
 EntryTime DATETIME NOT NULL,
 ExitTime DATETIME,
 TotalCost DECIMAL(10, 2),
 FOREIGN KEY (VehicleID) REFERENCES Vehicles(VehicleID) ON DELETE CASCADE,
 FOREIGN KEY (SpotID) REFERENCES ParkingSpots(SpotID) ON DELETE CASCADE,
 INDEX (EntryTime),
 INDEX (ExitTime)
);

CREATE TABLE Payments (
 PaymentID INT PRIMARY KEY AUTO_INCREMENT,
 SessionID INT,
 Amount DECIMAL(10, 2) NOT NULL,
 PaymentMethod ENUM('Credit Card', 'Cash', 'Mobile Payment'),
 PaymentTime DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (SessionID) REFERENCES ParkingSessions(SessionID) ON DELETE
CASCADE,
 INDEX (PaymentTime)
);

CREATE TABLE AccessLogs (
 LogID INT PRIMARY KEY AUTO_INCREMENT,
 VehicleID INT,
 GateUsed VARCHAR(50),
 Action ENUM('Entry', 'Exit'),
 Timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (VehicleID) REFERENCES Vehicles(VehicleID) ON DELETE CASCADE,
 INDEX (Timestamp)
);

CREATE TABLE Pricing (
 PricingID INT PRIMARY KEY AUTO_INCREMENT,
 RateType ENUM('Hourly', 'Overnight'),
 RateAmount DECIMAL(10, 2) NOT NULL,
 ValidFrom DATETIME NOT NULL,

 ValidTo DATETIME,
 INDEX (RateType)
);

CREATE TABLE GarageHours (
 DayOfWeek ENUM('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
'Sunday') PRIMARY KEY,
 OpenTime TIME NOT NULL,
 CloseTime TIME NOT NULL
);

CREATE TABLE Reservations (
 ReservationID INT PRIMARY KEY AUTO_INCREMENT,
 CustomerID INT,
 SpotID VARCHAR(10),
 StartTime DATETIME NOT NULL,
 EndTime DATETIME NOT NULL,
 Status ENUM('Active', 'Canceled', 'Completed') DEFAULT 'Active',
 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) ON DELETE
CASCADE,
 FOREIGN KEY (SpotID) REFERENCES ParkingSpots(SpotID) ON DELETE CASCADE,
 INDEX (StartTime),
 INDEX (EndTime)
);

Dummy Data Generation:
Dummy data is automatically generated using a random number generator, filling in the
tables with a list of data and pulling from there.

INSERT INTO Customers (Name, Phone, Email)
WITH RECURSIVE NumberSequence AS (
 SELECT 1 AS num
 UNION ALL
 SELECT num + 1
 FROM NumberSequence
 WHERE num < 100
)
SELECT
 CONCAT('Customer', FLOOR(RAND() * 1000)), -- Random name
 CONCAT('555-', FLOOR(RAND() * 1000), '-', FLOOR(RAND() * 10000)),
 CONCAT('customer', FLOOR(RAND() * 1000), '_', num, '@example.com')

FROM NumberSequence;
CALL GenerateUniqueSpotIDs(100);
INSERT INTO Vehicles (LicensePlate, Model, CustomerID)
SELECT
 CONCAT(CHAR(65 + FLOOR(RAND() * 26)), CHAR(65 + FLOOR(RAND() * 26)),
FLOOR(RAND() * 1000)),
 ELT(FLOOR(RAND() * 5) + 1, 'Toyota Camry', 'Honda Civic', 'Ford Mustang', 'Tesla Model S',
'Chevrolet Tahoe'),
 FLOOR(RAND() * 100) + 1 FROM (SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION
SELECT 4 UNION SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION
SELECT 9 UNION SELECT 10) AS a
CROSS JOIN (SELECT 1 UNION SELECT 2 UNION SELECT 3 UNION SELECT 4 UNION
SELECT 5 UNION SELECT 6 UNION SELECT 7 UNION SELECT 8 UNION SELECT 9 UNION
SELECT 10) AS b;

INSERT INTO ParkingSessions (VehicleID, SpotID, EntryTime, ExitTime, TotalCost)
SELECT
 v.VehicleID,
 ps.SpotID,
 NOW() - INTERVAL FLOOR(RAND() * 7) DAY - INTERVAL FLOOR(RAND() * 24) HOUR -
INTERVAL FLOOR(RAND() * 60) MINUTE AS EntryTime,
 NOW() - INTERVAL FLOOR(RAND() * 7) DAY - INTERVAL FLOOR(RAND() * 24) HOUR -
INTERVAL FLOOR(RAND() * 60) MINUTE + INTERVAL FLOOR(1 + RAND() * 24) HOUR AS
ExitTime,
 ROUND((FLOOR(1 + RAND() * 24)) * 5.00, 2) AS TotalCost
FROM Vehicles v
JOIN ParkingSpots ps ON ps.Status = 'Available';

INSERT INTO Payments (SessionID, Amount, PaymentMethod)
SELECT
 ps.SessionID,
 ps.TotalCost + IF(RAND() < 0.5, 2, 0),
 ELT(FLOOR(RAND() * 3) + 1, 'Credit Card', 'Cash', 'Mobile Payment')
FROM ParkingSessions ps;

INSERT INTO AccessLogs (VehicleID, GateUsed, Action, Timestamp)
SELECT
 ps.VehicleID,
 CONCAT('Gate ', FLOOR(RAND() * 4) + 1),
 'Entry',
 ps.EntryTime
FROM ParkingSessions ps
UNION ALL

SELECT
 ps.VehicleID,
 CONCAT('Gate ', FLOOR(RAND() * 4) + 1),
 'Exit',
 ps.ExitTime
FROM ParkingSessions ps
WHERE ps.ExitTime IS NOT NULL;

INSERT INTO Pricing (RateType, RateAmount, ValidFrom, ValidTo) VALUES
('Hourly', 5.00, '2023-01-01 00:00:00', NULL);

INSERT INTO Reservations (CustomerID, SpotID, StartTime, EndTime, Status)
SELECT
 c.CustomerID,
 ps.SpotID,
 NOW() + INTERVAL FLOOR(RAND() * 30) DAY + INTERVAL FLOOR(RAND() * 24) HOUR,
 NOW() + INTERVAL FLOOR(RAND() * 30) DAY + INTERVAL FLOOR(RAND() * 24) HOUR +
INTERVAL FLOOR(RAND() * 24) HOUR,
 'Active'
FROM Customers c
JOIN ParkingSpots ps ON ps.Status = 'Available'
LIMIT 50;

Stored Procedures, Triggers, Views & Indexes:

The majority of indexes used in this database are within the CREATE TABLE statements.

-= Indexes =-

CREATE TABLE ParkingSessions (
 SessionID INT PRIMARY KEY AUTO_INCREMENT,
 VehicleID INT,
 SpotID VARCHAR(10),
 EntryTime DATETIME NOT NULL,
 ExitTime DATETIME,
 TotalCost DECIMAL(10, 2),
 FOREIGN KEY (VehicleID) REFERENCES Vehicles(VehicleID) ON DELETE CASCADE,
 FOREIGN KEY (SpotID) REFERENCES ParkingSpots(SpotID) ON DELETE CASCADE,
 INDEX (EntryTime),
 INDEX (ExitTime)
);

CREATE TABLE Payments (
 PaymentID INT PRIMARY KEY AUTO_INCREMENT,
 SessionID INT,
 Amount DECIMAL(10, 2) NOT NULL,
 PaymentMethod ENUM('Credit Card', 'Cash', 'Mobile Payment'),
 PaymentTime DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (SessionID) REFERENCES ParkingSessions(SessionID) ON DELETE
CASCADE,
 INDEX (PaymentTime)
);

CREATE TABLE AccessLogs (
 LogID INT PRIMARY KEY AUTO_INCREMENT,
 VehicleID INT,
 GateUsed VARCHAR(50),
 Action ENUM('Entry', 'Exit'),
 Timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
 FOREIGN KEY (VehicleID) REFERENCES Vehicles(VehicleID) ON DELETE CASCADE,
 INDEX (Timestamp)
);

CREATE TABLE Pricing (
 PricingID INT PRIMARY KEY AUTO_INCREMENT,
 RateType ENUM('Hourly', 'Overnight'),
 RateAmount DECIMAL(10, 2) NOT NULL,
 ValidFrom DATETIME NOT NULL,
 ValidTo DATETIME,
 INDEX (RateType)
);

CREATE TABLE Reservations (
 ReservationID INT PRIMARY KEY AUTO_INCREMENT,
 CustomerID INT,
 SpotID VARCHAR(10),
 StartTime DATETIME NOT NULL,
 EndTime DATETIME NOT NULL,
 Status ENUM('Active', 'Canceled', 'Completed') DEFAULT 'Active',
 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) ON DELETE
CASCADE,
 FOREIGN KEY (SpotID) REFERENCES ParkingSpots(SpotID) ON DELETE CASCADE,
 INDEX (StartTime),
 INDEX (EndTime)
);

-= Triggers & Stored Procedures =-

DELIMITER //

CREATE PROCEDURE GenerateUniqueSpotIDs(IN num_spots INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE spot_id VARCHAR(10);
 DECLARE letter CHAR(1);
 DECLARE number INT;
 WHILE i < num_spots DO
 SET letter = CHAR(65 + FLOOR(RAND() * 26));
 SET number = FLOOR(RAND() * 30) + 1;
 SET spot_id = CONCAT(letter, number);
 IF NOT EXISTS (SELECT 1 FROM ParkingSpots WHERE SpotID = spot_id) THEN
INSERT INTO ParkingSpots (SpotID, Status) VALUES (spot_id, 'Available');
 SET i = i + 1;
 END IF;
 END WHILE;
END //

CREATE PROCEDURE StartParkingSession(
 IN p_VehicleID INT,
 IN p_SpotID VARCHAR(10),
 IN p_EntryTime DATETIME
)
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ROLLBACK;
 RESIGNAL;
 END;
 START TRANSACTION;
 INSERT INTO ParkingSessions (VehicleID, SpotID, EntryTime)
 VALUES (p_VehicleID, p_SpotID, p_EntryTime);
 UPDATE ParkingSpots
 SET Status = 'Occupied'
 WHERE SpotID = p_SpotID;
 COMMIT;
END //

CREATE PROCEDURE EndParkingSession(

 IN p_SessionID INT,
 IN p_ExitTime DATETIME,
 IN p_TotalCost DECIMAL(10, 2)
)
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ROLLBACK;
 RESIGNAL;
 END;
 START TRANSACTION;
 UPDATE ParkingSessions
 SET ExitTime = p_ExitTime,
 TotalCost = p_TotalCost
 WHERE SessionID = p_SessionID;
 UPDATE ParkingSpots
 SET Status = 'Available'
 WHERE SpotID = (SELECT SpotID FROM ParkingSessions WHERE SessionID =
p_SessionID);
 COMMIT;

-= Views =-

CREATE VIEW TopCustomersByPayment AS
SELECT
 c.CustomerID,
 c.Name,
 SUM(p.Amount) AS TotalAmountPaid
FROM Customers c
JOIN Vehicles v ON c.CustomerID = v.CustomerID
JOIN ParkingSessions ps ON v.VehicleID = ps.VehicleID
JOIN Payments p ON ps.SessionID = p.SessionID
GROUP BY c.CustomerID, c.Name
ORDER BY TotalAmountPaid DESC
LIMIT 10;

CREATE VIEW VehicleModelCounts AS
SELECT
 Model,
 COUNT(*) AS NumberOfVehicles
FROM Vehicles
GROUP BY Model

ORDER BY NumberOfVehicles DESC;

CREATE VIEW MostUsedParkingSpots AS
SELECT
 SpotID,
 COUNT(*) AS UsageCount
FROM ParkingSessions
GROUP BY SpotID
HAVING COUNT(*) > 1
ORDER BY UsageCount DESC;

CREATE VIEW CustomersWithInstantExits AS
SELECT
 c.CustomerID,
 c.Name,
 CASE
 WHEN TIMESTAMPDIFF(HOUR, ps.EntryTime, ps.ExitTime) = 0 THEN '0-1 hour'
 WHEN TIMESTAMPDIFF(HOUR, ps.EntryTime, ps.ExitTime) = 1 THEN '1-2 hours'
 WHEN TIMESTAMPDIFF(HOUR, ps.EntryTime, ps.ExitTime) = 2 THEN '2-3 hours'
 WHEN TIMESTAMPDIFF(HOUR, ps.EntryTime, ps.ExitTime) = 3 THEN '3-4 hours'
 END AS DurationCategory,
 COUNT(*) AS SessionCount
FROM Customers c
JOIN Vehicles v ON c.CustomerID = v.CustomerID
JOIN ParkingSessions ps ON v.VehicleID = ps.VehicleID
WHERE TIMESTAMPDIFF(HOUR, ps.EntryTime, ps.ExitTime) BETWEEN 0 AND 4
GROUP BY c.CustomerID, c.Name, DurationCategory
ORDER BY c.CustomerID, DurationCategory;

Part 4: Database Deployment

Database Deployment:
The screenshots below show my deployment of the database on AWS’ RDS platform, following
the video instructions shown on Canvas, as well as its related configurations. The database’s
name is “database-mis686-tp”.

Part 5: Analytical Questions and Dashboard

Analytical Questions:
1. What sort of information can be found from tracking the customers that use the parking

garage?
2. Which parking spots are the most frequently used, and how frequently are they

reserved?
3. What is the average duration of parking sessions, and does the model of the vehicle

have any influence on the parking sessions?
4. What is the total revenue generated by the parking garage over a specific period of

time?
5. Which vehicle models are most commonly parked in the garage, and where do they

frequently park?
6. Which days of the week have the most parking spots reserved or occupied? Which days

have the least?
7. What percentage of the parking spots are occupied, under maintenance, or reserved

compared to the number of vacant spots?
8. Which customers have made their reservations, but have not yet accessed the parking

garage?
9. Which method of payment is most frequently used by customers?
10. How frequently do customers take shorter parking sessions, and how long do these

short sessions tend to last?
11. Which customers take shorter sessions, and how many of these shorter sessions do

they take?

Dashboard Screenshots:

This screenshot shows the top of the dashboard, where it gives three different pieces of
information regarding the parking garage. The first is the total number of unique customers, the
second is the total number of parking sessions, and the third is the total number of payments.
The number of parking sessions and the number of payments should be the same, however the
number of customers does not need to match the number of sessions. This data can provide
insight to repeat customers over their hundreds of individual parking sessions.

The screenshot above shows a visualization of questions number 5 and 9. Given the bar graph
above labelled “Cars by Model”, we can see that of the 100 different customers, 26 of them
used the Tesla Model S, while only 14 of them used the Ford Mustang. The data table below it
also gives information on how each of them pay, with cash being used to pay 75 times, in
contrast to mobile payment only being used 61 times.

This image shows the next two visualizations, of which answer questions 10 and 11. The pie
chart in particular shows an array of sessions that range anywhere from 0 to 4 hours in length,
and compares their frequency to each other. Sessions that last 3 or 4 hours are generally quite
frequent compared to sessions that last 2 or less hours. The data table below it proves that
there are several customers with similar IDs that take multiple sessions for short periods of time,
some of which are 0 hours long.

This data table is a culmination of all the customers that used the parking garage within the
week. It gives a list of information, including their name, license plate number, the parking spot,
and how long they spent at that parking spot. This answers question number 1, giving a detailed
account of the various information from the customers taking a parking session at the garage.
Based on the data collected, parking sessions can range anywhere from 0 hours to more than
24 hours at a time, and the same customer can even park twice on the same day, and in
different locations.

